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The penetration of strong magnetic fields into a cylindrical vacuum space with massive metal walls has been
experimentally investigated. A practical solution on acceleration of the penetration of the magnetic field into
the working space has been proposed.

Introduction. In experiments with high-current pulsed charged-particle beams, it frequently becomes necessary
to form such beams in a vacuum space representing a metallic cylinder with fairly thick walls. If the pulse duration
of the charged-particle flux is sufficiently long (D10−3 sec), it is necessary to form a quasistationary magnetic field
with a duration of a few milliseconds inside the cylinder, i.e., to obtain magnetic induction in time in the form of a
rectangular pulse. The simplest method of creating the magnetic field is to use an inductance coil around the cylinder.
Formation of a 1–5 kA current in the form of a rectangular pulse in such a coil using an LC chain is quite a trivial
problem. However, when there is a massive hollow semiconductor cylinder inside the coil, the coil–cylinder system
changes to a transformer with a short-circuited turn and the process of mutual induction [1] keeps the magnetic field
from penetrating rapidly into the cylinder.

Theoretical Substantiation. Let us consider a system consisting of two coils (one inside the other). The ex-
ternal coil usually has several tens of turns; the internal coil represents a brass cylinder fairly thick walls (D10 mm).
It is necessary to evaluate the time of rise of the magnetic-field induction inside the system of coils to its maximum
value upon switching on a direct current in the external coil. Since the evaluation in our case is only qualitative, we
will use certain approximations for ideal systems, e.g., will employ formulas for coils of infinite length.

To obtain the values of magnetic inductions formed by each coil we consider fluxes which are created by the
currents in the coils:

the flux created by the first coil and traversing the second coil is as follows:

Ψ2 = Li1 = N2B1S , (1)

the flux created by the second coil and traversing the first one is

Ψ1 = Li2 = N1B2S . (2)

From these formulas, we easily express the magnetic-field induction by the current strength. The sum of the magnetic-
field inductions characterizes the change in the magnetic field inside this system; consequently, it is necessary to de-
termine the manner in which the currents change in the first and second coils.

We write Ohm’s law for the circuit of the first coil:

i1r1 = U + Es1 + Em1 . (3)

In this case we assume that the electromotive force (emf) of mutual induction Em1 may be disregarded (compared to
the other terms); the emf of self-induction Es1 is determined as
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Es1 = − L1 
di1
dt

 ,

and U is the supply voltage applied to the primary coil. As a result we obtain a nonhomogeneous differential equation
of first order
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the solution of which is the expression
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where τ1 = L1
 ⁄ r1.

We write  Ohm’s law for the second coil in the form

i2r2 = Es2 + Em2 , (6)

here we have
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di2
dt

 ,   Em2 = − L 
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As a result we obtain a nonhomogeneous differential equation of first order

di2
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 + 
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 . (7)

Its general, the solution is the sum of the general solution i2 = D exp (−t ⁄ τ2) of the corresponding homogeneous equa-
tion and the particular solution i2 = A exp (−t ⁄ τ1) of the nonhomogeneous equation. With account for the initial con-
ditions it takes the form
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Now we may evaluate the magnetic induction inside the system of coils:

B = B1 + B2 = 
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 . (9)

Substitution of the expressions for currents determined by mathematical transformations and with allowance for the fact
that N2 = 1 yields a formula for analysis of the change in the magnetic induction inside the cylinder:
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where
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In our case the resistance of the thick-walled brass cylinder r2 is several orders of magnitude lower that the
resistance of the primary coil r1; therefore, F is close to unity, and (1 − F) tends to zero. Then (10) will take the form

B C 
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 . (11)

From relation (11), it follows that the times of penetration of the magnetic field into the coil–cylinder system and of
reaching the magnetic-induction maximum are determined by the quantity τ2 and consequently by the parameters of
the second coil r2 and L2. For the experiments, we used an L59-brass cylinder of length 250 mm (equal to the length
of the primary coil), outside diameter 94 mm, and wall thickness 12 mm. Evaluations of τ2 in this case yield a value
of D10 msec, whereas the characteristic time is τ1 C 1 msec.

It seems impossible to theoretically calculate the time of penetration of the magnetic field into the cylinder,
even though it has no complex interior, since the conductivity of the cylinder is strongly dependent on the technology
of manufacture of its material and these data are not available in the reference books as a rule; therefore, experimental
measurements must be carried out in each particular case.

Experimental. The magnetic field inside the cylinder was created using an inductance coil (110 µH). The coil
was wound on a Caprolon form, into which a hollow brass cylinder was tightly fitted. A line of LC chains was cre-
ated for power supply of the coil; the line made it possible to produce a nearly rectangular current pulse of more than
5 kA at voltages to 5 kV. The current through the coil was monitored using a low-inductance shunt of resistance
0.035 Ω [2, 3]. Figure 1 gives the oscillograms of the coil-current pulses for different voltages on the capacitors of
the supply line. The magnetic induction inside the coil was measured using a Hall probe [2, 3]. The oscillogram of

Fig. 1. Oscillograms of coil-current pulses for different voltages on the capaci-
tors of the supply line: 1) U = 1, 2) 2, and 3) 3 kV. I, kA; t, msec.

Fig. 2. Oscillograms of the magnetic induction at the center of the coil under
different conditions: a) without a brass cylinder; b) with a massive brass cyl-
inder; c) with a 0.35-mm-thick brass cylinder; d) with a cut massive brass cyl-
inder. B, T; t, msec.
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magnetic induction at the center of the coil without a brass cylinder is shown in Fig. 2a. As is seen, the change in
the magnetic induction inside the coil corresponds to the change in the coil current. However, when the brass cylinder
is set into the coil, the magnetic induction changes slowly and does not reach its maximum even by the end of the
current pulse (Fig. 2b). This is due to the fact that the rise in the magnetic induction of the basic coil is hindered by
the magnetic field generated by the current of a short-circuited turn, i.e., of the brass cylinder. In such a case, for the
quasistationary magnetic field with a duration of a few milliseconds to be attained, a very large capacitance is needed
for the LC chain supplying the magnetic system; this leads to unacceptable weight-size parameters of the entire sys-
tem. The higher the resistance of the brass-cylinder material, the more rapid the rise in the magnetic induction inside
the cylinder. Figure 2c shows the oscillogram of the magnetic induction inside a 0.35-mm-thick brass cylinder. Here
the pulse edges are not stretched strongly compared to the coil-current pulse (Fig. 2a). However, it is virtually impos-
sible to obtain a mechanically strong vacuum system for charged-particle fluxes for such thicknesses, much less in the
case of arrangement of certain beam-control systems inside the cylinder.

For the brass cylinder not to represent a short-circuited turn, we cut it lengthwise. The cut depth was 1 mm.
The cut was filled with epoxy resin to produce vacuum in such a cylinder. The oscillogram of the magnetic-field in-
duction inside the cut massive brass cylinder is given in Fig. 2d. As is seen in the figure, we are able to obtain a
quasistationary magnetic field during D3 msec. Measurements of the magnetic induction along the axis and radius of
the cylinder have shown that the magnetic field is homogeneous throughout the cylinder. The longitudinal cut in the
brass cylinder eliminates only transverse currents, which enables the magnetic field to rapidly penetrate into the cylin-
der; the longitudinal currents of removal of charged particles appearing on the cylinder wall are not hindered by it.

With the aim of checking the possibilities of controlling charged-particle beams, we measured the magnetic
induction inside the cut massive brass cylinder for different voltages on the capacitors of the supply line (Fig. 3). As
is seen in the figure, a quasistationary magnetic field with a magnetic induction of more than 1 T and a duration of
D3 msec was obtained.

Conclusions. The time of penetration of the magnetic field into a hollow conducting cylinder with fairly thick
walls has theoretically been evaluated. It has been shown that the deceleration of the penetration of the magnetic field
into the cylinder is determined by its conductivity and inductance where it carries transverse currents. A practical so-
lution on acceleration of the penetration of the magnetic field into a thick-walled cylinder manufactured from a con-
ducting material has been proposed. The longitudinal cut of the cylinder makes it possible to obtain, inside the
coil–cylinder system, a quasistationary magnetic field of duration D3 msec and magnetic inductance more than 1 T for
minimum weight-size parameters. Such magnetic systems may be used for control of a relativistic-electron beam by a
current with a pulse to several kiloamperes, which is necessary in creating free-electron lasers.

NOTATION

A and D, constants; B, magnetic induction, T; C, capacitance, F; E, emf, V; I, current measured experimen-
tally in the circuit without the second coil, kA; i, current strength, A; L, mutual inductance, H; L1, inductance of the
first coil (primary inductance), H; L2, inductance of the second coil (secondary inductance), H; N, number of turns; r,

Fig. 3. Oscillograms of the magnetic induction at the center of the cut massive
brass cylinder for different voltages on the capacitors of the supply line: 1) U
= 1, 2) 2, 3) 3, and 4) 4 kV. B, T; t, msec.
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resistance, Ω; S, cross-sectional area of the coils, m2; t, time, msec; U, supply voltage, V; τ, time constant of the dis-
charge, sec; Ψ, magnetic-induction flux, Wb. Subscripts: 1, electric circuit without the second coil; 2, second coil; m,
mutual induction; s, self-induction.
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